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1.0 INTRODUCTION

j Defining the flutter and divergence ,characteristics of aerodynamic sur-

faces is a basic requirement to assure structural and performance integrity of

a given design in its operational environment. For systems which have struc-
tural nonlinearities another mode of aeroelastic response, limit cycle oscil-

lation, may be present. A comparison between limit cycle response and clas-

sical flutter and divergence is illustrated in Figure 1. The limit cycle

response, Figure 1(c), is defined as a constant amplitude steady state oscil-

lation whereas the divergence, Figure l(a), and flutter, Figure l(b), are

unstable motions with increasing amplitude. The importance of the limit cycle

response is the potential of these oscillations to occur within the flutter

and divergence flight envelope. Frequently real hardware designs do have non-

linearities in the surface support structure and/or actuators as a result of

.-. manufacturing tolerances and/or freeplay. When these nonlinearities exist,

the classical assumption of a linear force-displacement relationship is no

longer justified and an understanding of the nonlinear effect on the dynamic

behavior is required to evaluate the system response. In this study effort

analysis procedures were developed to characterize the limit cycle response of

aerosurfaces with discrete structural nonlinearities.

The effects of structural nonlinearities on aerodynamic surface response

has been studied both analytically and experimentally, Reference 1 through 5.

In these studies several nonlinearities that are typically encountered in

aerodynamic surface designs were considered. In the analytical studies of

References 1 through 4 the method of harmonic balance or describing-function

approach was used to characterize the nonlinear behavior of an aerodynamic

surface with root freeplay nonlinearities of the type shown in Figure 2.

These nonlinearities are representative of a deadband or "slop" in the root

support structure with and without a linear preload. The resulting behavior

is such that the stiffness and force developed in the adjacent members 4s a

nonlinear function of amplitude. The describing-function approach uses a one

term Fourier Series expansion of the force to account for the effect of this

nonlinear stiffness on aerosurface response. This method gave satisfactory1.
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results when the amplitude of motion was greater than the magnitude of the

freeplay, Figure 2(a), or freeplay plus preload, Figure 2(b). However, it was

pointed out Referencesl and 2, that when the amplitude of motion is approxi-

mately equal to the magnitude of the nonlinearity, significant error can occur

as a result of neglecting the higher harmonics in the series expansion of the

force-displacement relationship. The truncation of the higher harmonics is an

inherent drawback of the one-term describing function approach.

An experimental study of the limit cycle response of aerodynamic surfaces

with structural nonlinearities is discussed in Reference 5. During this study

a model was developed with root structural behavior which gave a variety of

nonlinear stiffness characteristics to the aerosurface. Wind tunnel tests

were conducted and data obtained to verify the model's response character-

istics. It was noted by the authors of Reference 5 that there exists a need

for improved analytical tools to accurately describe the nonlinear behavior in

order to better correlate experimental and analytical results

The objective of the present analytical study was to develop a technique

to predict limit cycle response of aerosurfaces with discrete structural non-

linearities that retains the flexibility and well defined procedures of the

describing-function approach (References 1 and 2) yet provides greater ac-

curacy and generality in modeling the nonlinear system behavior. To meet this

objective an asymptotic expansion method was used to model the nonlinear

force-displacement relationship that results when nonlinearities of the type

shown in Figure 2 are introduced at the aerosurface support. The primary

difference between the asymptotic method and the describing-function method is

the capability of the asymptotic method to include higher harmonics in the

representation of the nonlinearity and obtain successively higher order ap-

proximations to the limit cycle response. Using the asymptotic expansion

technique a broader category of discrete nonlinearities than those shown in

Figure 2 can be modeled.

Specifically, the problem investigated during the present study was the

limit cycle response of an aerodynamic surface in a subsonic airstream, Fig-

ure 3. The nonlinearities shown in Figure 2 were assumed to act at the root

support springs Ke and K shown in Figure 3. This problem is represenative
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of a missile control surface with a loose hinge and/or joint slippage in the

surface support structure and/or actuator. The aerodynamic forces acting on

the surface were modeled using a steady state aerodynamic theory. This theory

assumes the lifting force is proportional to and in phase with the torsional

motion of the surface which is assumed to be sinusoidal. Simple aerodynamics

were used so that the influence of the nonlinearities on the surface response

could be evaluated by a much more tractable computational effort. The effects

of using a more sophisticated aerodynamic theory for the describing-function

approach were investigated and documented in Reference 2. There it was shown

that a more sophisticated aerodynamic theory can substantially change the

flutter results employed to predict aeroelastic response, but has no impact on

modeling the nonlinear behavior. The authors believe that the conclusions

presented in Reference 2 are applicable to the present analysis effort as the

linear aerodynamic theory does not impact the representations of the struc-

tural nonlinearities contidered in this study.

This study was organized into two separate tasks. The first task, dis-

cussed in Section 2.0, involved development of the asymptotic approximations

for the limit cycle response for each of the two nonlinearities shown in Fig-

ure 2. First and second order asymptotic solutions were formulated and com-

pared with the results obtained using the describing-function method of Re-

ferences I and 2. The equations for including the higher order harmonics in

the time history response calculations were also derived under this task. The

second task, discussed in Section 3, involved application of the developed

asymptotic solutions to predict the limit cycle response of the baseline aero-

dynamic surface chosen for this study. This baseline surface design is based

on the Harpoon missile control surface and is shown in Appendix A. In Appen-

dix A, representative flutter results for selected root spring configurations

are presented. These results are used in the applications discussed in Sec-

tion 3. Appendix B contains the detailed derivation of the asymptotic solu-

tions. While key equations are presented in the text of Section 2, inter-

mediate steps in the derivations are detailed in Appendix B.

6
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A2.0 DEVELOPMENT OF ASYMPTOTIC SOLUTION

I Application of the method of asymptotic expansions to model nonlinear

behavior of an aerodynamic surface response forms the basis of the procedures

developed in this investigation. The asymptotic expansion method used is the

Krylov-Bogoliubov-Mitropolski (KBM) technique. This technique is a perturbation

method based on a more general approach known as the method of averaging, and

is discussed in detail in References 6 and 7. In the method of averaging, the

motion is assumed to vary slowly with time and the amplitude and phasing are

determined as time dependent functions of the system nonlinearities. The

advantage of the method of averaging, and in particular the KBM technique, is

the stability of the solutions over sufficiently long intervals of time. This

type of solution is necessary for quantitative as well as qualitative analysis

of the limit cycle behavior of a nonlinear system. Another advantage of the

asymptotic expansion technique is that it provides a more accurate determination

of the nonlinear load-displacement relationship than the one-term describing-

function approach of References 1 and 2, yet can be used in much the same

manner. In both the asymptotic and describing-function techniques, the derived

expressions for the load-displacement relationship are used to define an

4"effective" stiffness for the nonlinear element. This effective stiffness is

used in subsequent aeroelastic analyses.

The procedures for investigating the limit cycle response developed in this

study require defining the flutter characteristics of the aerodynamic surface.

In this study, flutter analysis of both rigid and flexible configurations were

analyzed. The flutter analysis is performed using the linearized form of the

equations of motion, as was done in the describing-function and other methods,

References 1 through 4. This approach assumes that an effective stiffness

adequately describes the elastic behavior for the infinitesimal oscillations at

flutter onset. The details of the flutter analysis for the baseline surface

analyzed in this study are presented in Appendix A.

During this study, the nonlinear aeroelastic system was represented by the

second order differential equation

d2 2d x +W x "C f (x) + Q(x) (1)) ~dt

7



In Equation (1), f(X) represents the nonlinear force acting on the elastic

system, X is the surface root displacement, o is the natural frequency of the

linear system (-0) and Q(x) is the aerodynamic forcing function. The

f(X) term appears in Equation (1) as a result of the nonlinear load-displace-
ment relationship for the root support springs of the surface. It is the
nonlinear force term that is used to determine the form of the asymptotic

expansions derived to approximate the limit cycle response of the nonlinear

system.

In the asymptotic method a perturbation technique is used to expand the

contribution of the nonlinearity in terms of a small parameter or gage func-

tion, e . This expansion takes the form of an asymptotic series comprised of

integer powers of e . For the system respresented by Equation (1) the form of

the asymptotic solution defined by the KBM technique is given by

cos 'P + N Cn Un (A,*) + 0 (eN+l) (2)
n=l

For the freeplay nonlinearity this equation was used directly. For the preload

nonlinearity it was modified as will be discussed in Section 2.2. The

displacement, X, as defined in Equation (2) consists of a linearly independent

combination of periodic functions, the first term being the fundamental har-

monic. The remaining terms expanded in powers cf e represent the asymptotic

approximation of the nonlinear contribution to the response. The functions Un

are periodic functions comprised of higher harmonics of the phasing parametertj

and the surface root amplitude A. N indicates the order of the asymptotic

approximation and the symbol O(CN+l) represents term of order greater than N.

A and 40are, in general, functions of time defined by the ordinary differen-

tial equations dA n (N+l (3)d- " n + 0 )(3

di w+ n N+l
-4 o0+ O n + 0 ( ) (4)

n-I

The right hand side of Equations (3) and (4) are series expansions of e, the

gage function, and parameters 0 n and On. These On and 1n terms are determined

by integrating the nonlinear force term f(X) that appears in Equation (1) over

the total period of the oscillation which is defined to be 27. The amplitude

)S
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and phasing are thereby time dependent functions of the nonlinear load-

I displacement relationship defined by Equations (3) and (4).

In the asymptotic method, as in most perturbation methods, the linear

SI system results are approached as e approaches zero. In this case, the ampli-

tude, A, becomes constant and the phasing,40, becomes a linear function of

time with a constant frequency, Equations (3) and (4). The displacement in

Equation (2) then takes the form of simple harmonic motion of linear elastic

J. systems. The basis of the asymptotic solution approach is to determine the

solutions of equations (2) through (4) for successively higher orders of e.

* The procedure for determining the asymptotic solutions depend on deriving

appropriate functional forms of Un,an, and 9n. This is accomplished by ex-

pressing the load developed in the nonlinear root springs by

F (x) - K(x)X (5)

K(X) is the nonlinear stiffness associated with the root support spring and X

is the root displacement defined by Equation (2). To determine the Un, an and

O n coefficients only the first term of Equation (5) is retained and this term

is expanded in the Fourier Series. The functions an , On and Un are expressed

in terms of the coefficients of this Fourier Series and therefore are inte-

grals of the nonlinear force term evaluated over a period of 27. In this

manner, the equations defining the asymptotic solutions of Equations (2)

through (4) are completely defined. During this study the asymptotic solu-

tions were obtained for first and second order approximations, i.e., terms in

Equations (3) and (4) up to e2. The details of the Fourier Series expansions

and the determination of the asymptotic solutions are given in Appendix B.

The results of the asymptotic expansion for the two types of nonlinearities

considered in this study are summarized below.

2.1 Freeplay Nonlinearity

The freeplay nonlinearity is illustrated in Figure 2(a). The asymptotic

solution for the freeplay nonlinearity is derived directly from the equations

I.
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developed in the preceding section. The waveform of the developed load will

take one of the two shapes shown in Figure 4, depending on the relationship

between the magnitudes of the freeplay, S, and the amplitude, A, of displace-

ment. For A less than S no load is developed, Figure 4(a). When A is greater

than S the load is as shown in Figure 4(b). The nonlinear load is then de-

termined by specifying the freeplay S and the amplitude A. The approach used

throughout this study is based on derivation of the "effective" stiffness Z of

the nonlinear spring. This effective stiffness is used in Equation (5) to

determine the corresponding load. With the effective load substituted in

Equation (1), the equivalent linearized system is analyzed by conventional

methods. It is the determination of this effective stiffness term that uti-

lizes the asymptotic expansion techniques.

The "effective" stiffness K of the nonlinear spring including the in-

fluence of freeplay is defined in the asymptotic method as:

K = K(I +C B1 + C2 B2 + ... CN BN) (6)

In this expression, the Bn terms are directly related to the On coefficients

of the expansion of Equation (4). The relationship between the On and Bn

terms is derived in Appendix B. Therefore, rather than actually solving Equa-

tion (4), once the Bn coefficients are determined and therefore the Bn's, the

"effective" stiffness is computed from Equation (6) directly. For the free-

play nonlinearity all an coefficients are zero due to the symetry of the

freeplay nonlinearity and the single valued odd form of the nonlinear load.

This implies, from Equation (3), that the amplitude of the limit cycle oscillation

is constant.

The expression for the first order approximation of the effective stiff-

ness, hereafter referred to as the first order solution, contains only the B1
term in Equation (6). The form of this term (from Appendix B) is given as

B1 " 0 (A<S)

CB1 * ~ 1 2 ti + cos t1 sin 2 t1) (7)

II
tl .Cos 1 (S/A) (8)

I 10



(a) Load (A<S)

(b) Load (A>S)

FIGURE 4 DEVELOPED LOAD FOR FREEPLAY NONLINEARITY



Using Equations (6), (7) and (8) the relationship between the effective stiff-

ness and the linear spring rate for a freeplay nonlinearity may be obtained to

the first order.

The form of Bl developed from the asymptotic expansion technique is iden-

tical to that developed using the describing-function, References 1 and 2.

Since the describing function results, and hence the first order solutions are

discussed in detail in References 1 through 4, they will only be summarized

here for comparison and the remaining discussion focused on the higher order

solutions.

The second order solution is obtained by adding the effect of second order

terms to the first order solution. In order to determine the second order

approximation of the effective stiffness, it is necessary to derive the ex-

pression for the B2 coefficient that appears in Equation (6). Using the pro-

cedures for the asymptotic method, the second order correction term for a

single degree of freedom with a freeplay nonlinearity is of the form (from

Appendix B)

C2 B2 - 0 (A<S)

c2  =.. n rnf , rn Cos t sin nt (9)

in*3,5 n -1 n1

where

[u sin (n-1)t1  sin (n+l)t1](1'

____ ____ ___ 12
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and tj is definded in Equation (8). The second order correction terms of

Equation (9) contains the coefficients of the fundamental harmonic in the

Fourier Series expansion of the load and coefficients of all higher order

harmonics. Therefore the second order solutions are not restricted, as is the

describing-function approach of References 1 through 4, to a one-term, first

harmonic approximation. Substituting Equations (7) through (10) into Equa-I * tion (6), the relationship between the effective stiffness and the linear

spring rate for a freeplay nonlinearity may be obtained for the second order

approximation. This relationship is shown in Figure 5 as a function of the

amplitude of motion to freeplay ratio, (A/S). For amplitude ratios (A/S) less

than 1, the effective stiffness is zero. As the amplitude increases, the

magnitude of K approaches that of linear stiffness K. This corresponds physi-

cally to the nonlinearity becoming less and less significant as the (A/S)

ratio increases and e approaching zero in Equations (3) and (4).

As shown in Figure 5, there is little difference in the results of the

first and second order solutions where the nonlinearity is most significant,

low (A/S) values, and the solutions converge very rapidly as (A/S) increases.

The implication here is that the stiffness behavior of system with a freeplay

nonlinearity is dominated almost completely by the fundamental harmonic and

the second order corrections have little impact on the response. For a single

degree of freedom system, the effective stiffness value can be expressed in

terms of an effective frequency of the nonlinear system. For the stiffness

ratios shown in Figure 5, the corresponding first and second order solutions

expressed in terms of frequency are shown in Figure 6. In this figure the

asymptotic solutions are compared with numerical simulation results obtained

for a single degree of freedom system in Reference 1. As the figure indicates,

*1 the asymptotic solutions predict frequency ratios very close to those given by

the numerical simulation.

2.2 Preload Nonlinearity

For the preload nonlinearity shown in Figure 2(b), the asymptotic func-

tions or displacements, defined by Equation 2, were modified to account for the

non-symmetry of the load displacement relationship. This displacement func-

13
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tion was assumed to be of a similar form to that used in Reference 1 and is

N n N+1

X = A + A1 cos tk + nal Un (A,*) + 0 ) (11)

The coefficients Ao and A1 were defined such that the energy stored in the

nonlinear spring is the same for both positive and negative displacements. In
addition, it was required that Equation (11) result in a positive amplitude 
equal to the initial displacement. Thus, the amplitude coefficients that

appear in Equation (11) are obtained from

A1 . A + 1 V12 P A - pP<A<P+2S)(

A1  f + lV(A-2Sr ,pS (A>P+2S) (13)

In both cases, the coefficient A0 is obtained from the relationship

A = A1 + A0  (14)

It has been assumed that the influence of a preload nonlinearity is related to

positive displacements of the system. When amplitude of motion, A, is 11D;s

than the-preload P, Al equals A and Ao is zero. For this situation, the non-

linear problem is reduced to a linear problem.

The waveform of the developed load in the nonlinear spring will take the

shapes shown in Figure 7. As before, these waveforms are dependent on the

relationship between the magnitudes of the freeplay, preload and amplitude of

motion. Proceeding as was done for the freeplay case, the coefficients of

Equation (6) were defined using the load displacement relationship illustrated

in Figure 7. The first order approximation to the "effective" stiffness is of

the form

mm B - 1.0 (A<P) (15)

.1.. " iv tl + "(P-Ao) sin t sin 2t1] (16)

(P<A<P+2S)

For amplitude of motion A>P+2S we have,

c8 1 3B I " +t1  -t 2  - (P+2S-Ao) sin t, + (17)

2 (P-Ao) sin t2 . (sin 2 t- sin 2 t2)

01
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where tl = COs..- (18

1(18)

t 2 = cos'l- A (19)

As was determined for the freeplay case the first order asymptotic solution

and the describing-function solution of References I and 2 are equivalent.

Proceeding to the second order approximation the B2 coefficient of Equation (6)

is of the form (from Appendix B)

C2 B2 -I rn I  2(P-Ao)sin nt I rn] (20)

n=2 n -1 iiL

rn is defined by Equation (10), t1 by Equation (16) and B is given by Equa-

tion (15). For the amplitudes AP+2S
2 - t2)]

)2= 1 in nt1 - sin nt (21)
2 ITr n=2 n -1 11'~

42 cos tI .in ntI) + an

B1 and t2 are defined by Equations (17) and (19) and

a [sin (n-l)t 2 - sin (n-l)tl sin (n+l)t 2 - sin (n+l)t] (22)i' n = 2 (n-1) + 2 Tn22)T

The first and second order solutions for the stiffness ratio is plotted

in Figure 8 as a function of the amplitude of motion to freeplay ratio for a

freeplay to preload ratio (S/P) of one. For amplitudes of motion less than

the preload P the frequency ratio is one and the response is linear. As the

ramplitudes of motion increases, the stiffness, and in turn, the frequency

decreases. This softening response is due to the deadspace in the spring

causing the effective stiffness to be less than the linear value. As the

amplitude increases well beyond the nonlinear region, the influence of the

nonlinearity becomes small and the magnitude of frequency coefficient ap-

proaches one.

18
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While both first and second order solutions shown in Figure 8 exhibit the

same trends, the second order solution predicts a significantly greater re-

duction in stiffness for amplitudes of motion near P+2S where the nonlinearity

is most significant. At higher values of the amplitude, the first and second

order solutions converge and asymptotically approach the linear solution. The

difference in the two solutions near the nonlinear region is directly a result

of including higher harmonics in the second order approximation. These har-
*monics are seen to influence the response most when the amplitudes of motion

, fall within the deadband region of the load displacement curve, Figure 7.

A comparison between the asymptotic solutions and numerical solutions are

shown in Figure 9. The numerical solutions, Reference 1, were obtained by

directly integrating the single degree of freedom equations of motion. Fi-

gure 9 shows that the first order approximation (describing-function) is un-

conservative in predicting the effective frequency behavior when compared to

the numerical results for amplitudes near the preload-plus-freeplay region,

(A/S=3). On the other hand, the second order solution tends to be conserva-

tive in predicting the effective stiffness. At amplitudes of motion near or
greater than twice the preload-plus-freplay values, there is little difference

between the numeri:al and first or second order solutions. Based on these

comparisons, it is apparent that the higher harmonics contribute significantly

to the response at amplitudes of motion near the nonlinear region of the

load-displacement relationship for the preload nonlinearity.

2.3 Time History Results

In addition to the computation of the effective stiffness of the non-
linear system, the asymptotic method provides a means of obtaining higher

order approximations to the response time history. The time dependent motion

of the nonlinear system as defined in the asymptotic method is given by Equa-

tion (2). In this expression, the functions Un contain the contributions of
higher harmonics in the response and exclude any contribution of the funda-

mental harmonic. Application of the asymptotic method consists of determining

the appropriate expression for Un based on the order of the asymptotic ap-

proximation and the number of harmonics desired. The general form for the ex-

pression for each type of nonlinearity considered in this study is given be-

low.
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2.3.1 Freeplay Nonlinearity

For the freeplay nonlinearity the form of the U function is determined

using the coefficients of the Fourier Series expansion of the load displace-

ment relationship. From the results of Appendix B to the second order

U 1 - i cos t sin nt cos nut (23)
Wn= 0*5rn n 1

N is odd, rn is defined in Equation (10) and @is the effective frequency.

The time history results for the freeplay nonlinearity are shown in Fig-

ures 10 and 11. In Figure 10, the time history response, defined by Equa-

tion (2), is plotted for an A/S ratio of 3 and an initial amplitude of 0.20.

The limit cycle motion shown in Figure 10 exhibits a very regular periodic

motion with an almost constant amplitude and frequency corresponding to effec-

tive stiffness value determined by the relationship defined in Paragraph 2.1.

The period of the time history indicates that the response is controlled al-

most entirely by the fundamental harmonic, the first term of Equation (2).

The time history of the second term of Equation (2), corresponding to the

contribution of higher harmonics, is shown in Figure 11. Terms up to the

eleventh harmonic were included in Equation (23) in the determination of U.

Note that although the frequency of U is higher, the amplitude is signifi-

cantly lower than that of fundamental harmonic. These results are consistent

with the comparisons between the first and second order solutions discussed in

Paragraph 2.1. The results show the first order solution utilizing a one term

Fourier Series expansion of the load is sufficient for the freeplay nonlin-

earity and the higher harmonics of the second order solutions have little

impact on the system response.

2.3.2 Preload Nonlinearity

For the preload nonlinearity the form of the U function is determined in

the same manner as was done for the freeplay case. From the results of Ap-

pendix B the second order solutions for amplitudes of motion in the range PSA5

P+2S is defined as 2 2' A 1
1  ['( - L Ttl+ .2-2 sin t1

I f cos niwt ~ (.A l- -(24)

. 1 =2~I COn[l( 1 P-Ao) sin nt 1 -rnj 24

n-2 n 2 _1 ~nw L
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rn and tj are given in Equations (10) and (16). For amplitudes of motion A

I P+2S

S+ t2 + sin t sin t2 +AL(t 2 t)ILO U1 1 2) tlAl 2

1 o r~- IL [(1A (sin nt (25)
2 I - 2 tl n=2 n2_1 nw 1 ° t) (25

- sin nt2 )] 2 cos tI sin ntI + a

tl, t2 and an are defined by Equations (18), (19) and (22).

The time history results for the preload cases are shown in Figures 12

and 13. In Figure 12 the displacement time history for a preload nonlinearity

with an initial amplitude of 0.20 is shown. In this figure the two distin-

guishing features of the preload time history is the offset of the response

from zero and the presence of higher harmonics in the response. The offset is

due to the presence of the preload and the unsymmetric nature of the nonlinear

load-displacement relationship. The higher harmonics in the amplitude are due

to the contribution of terms appearing in U. The time history plot of the

higher harmonics in the U coefficient is shown in Figure 13. In Figure 13 the

offset in the response is also present. Also note that comparing the magni-

tude of the time histories in Figures :2 and 13 shows that the U terms are

greater than forty percent of the total amplitude. This indicates that a

significant amount of the strain energy developed in the root support springs

cycles with a frequency greater than the frequency of the fundamental harmon-

ic. Based on these observations, the influence of higher harmonics is seen to

- be significant in the prediction of both the effective frequency and limit

cycle response of the system response for a preload nonlinearity.

?12
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3.0 DETERMINATION OF AERODYNAMIC SURFACE
LIMIT CYCLE RESPONSE

S 1 In this section the equations and techniques developed in Section 2.0 for

the freeplay and preload nonlinearities are applied to predict the limit cycle

J response'of the baseline aerodynamic surface. The frequency and dynamic pres-

sure at which the limit cycle oscillations are sustained were determined as a

- function of the amplitude of motion and magnitude of the nonlinearity. The

aeroelastic data used was based on linear flutter results obtained for the

effective system where the nonlinear terms in the equations of motion were

replaced by the corresponding effective stiffness calculated by the asymptotic

methods. The flutter results for both a rigid and flexible representation of

the baseline aerodynamic surface were determined using standard eigenanalysis

procedures and are presented in Appendix A.

The geometry and physical characteristics of the baseline control surface

are also presented in Appendix A. The results of this section and Appendix A

are for a specific aerodynamic surface using a simplified aerodynamic theory.

However, the application of the developed procedure is not restricted to these

conditions. The procedures are applicable to a variety of surface geometries,

aerodynamic theories or flutter analysis techniques.

Application of the asymptotic expansion results to predict the limit cycle

response of the baseline aerodynamic surface follows the same procedure as

developed in References 1 and 2. The effective uncoupled frequency was

calculated from the asymptotic solutions for each nonlinearity and corresponding

degree of freedom. The dynamic pressure defined by Equation 26, at which the

limit cycle oscillation is sustained, was then determined from the data in

Appendix A.

q = U2  (26)

The results for the freeplay and preload nonlinearities considered in this study

follow.

I-
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3.1 FREEPLAY NONLINEARITY

The procedure followed to determine the limit cycle response of the aero-

dynamic surface with root freeplay structural nonlinearities is shown in Fig-

ure 14. This figure shows the step-by-step procedure for introducing the

nonlinear effects in either or both root pitch and root roll degrees of free-

dam.

Results for the rigid baseline control surface with a freeplay nonlin-

earity in the root pitch degree of freedom are shown in Figure 15. These

results are for a freeplay nonlinearity in the root pitch degree of freedom,

S of 0.2 degrees and an uncoupled root pitch frequency of 215Hz. The data

indicates the variation in the effective dynamic pressure at which limit cycle

oscillations will be sustained as a function of the amplitude-to-freeplay

ratios in the root pitch degree of freedom. This figure shows the influence

of the freeplay nonlinearity is most pronounced for amplitudes of motion near

the freeplay value. For successively larger amplitudes of motion, the effec-

tive stiffness approaches the uncoupled stiffness value and the critical dy-

namic pressure approaches that of the linear system.

The results obtained using the first and second order asymptotic solu-

tions to predict the limit cycle behavior are compared in Figure 15. They

indicate, as. was found in Section 2.0, that the first and second order solu-

tions differ only slightly for the freeplay case. Again, this behavior is

attributed to the dominance of the fundamental harmonic in the response.

Results for freeplay nonlinearities in root roll and for two freeplay

nonlinearities were found to differ only slightly from those of References 1 and 2.

The results for these cases are not repeated here and the reader is referred

to References 1 and 2 for more details on the influence of freeplay

nonlinearities on the limit cycle behavior.
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3.2 PRELOAD NONLINEARITY1
The procedure used for predicting the limit cycle response of the rigid

Ibaseline control surface with a preload nonlinearity is very similar to that

presented in the preceding section for the freeplay nonlinearity. The compu-

tational steps to be followed to predict the limit cycle response are shown in

Figure 16. Linear system flutter analyses are conducted for variations in the

effective stiffness parameter. These flutter results are then modified to

account for the presence of the structural nonlinearities.

Using the second order asymptotic solutions, the results shown in Fig-

ure 17 were obtained for a rigid control surface having a single root roll

preload nonlinearity. This figure shows the change in the dynamic pressure as

a function of root roll amplitude of motion to freeplay ratio, A/S, for vary-

ing freeplay-to-preload, S/P, ratios. For amplitudes of motion less than the

preload, the critical dynamic pressure equals the flutter dynamic pressure of

the linear system. As the amplitude of motion increases, the influence of the

freeplay is reflected in the rise of the dynamic pressure. This occurs as a

result of the softening effect on the effective root roll stiffness which

results in a higher dynamic pressure for this particular aerodynamic surface.

As the amplitude of motion continues to increase, the influence of the non-

linearity decreases and the results again approach those of the linear system.

In Figure 18 the results obtained for both first and second order asymp-

totic solutions are shown for a preload nonlinearity in the root pitch degree

of freedom for a rigid control surface. From this figure the influence of the

higher harmonics is apparent. While the trends are basically the same, the

second order solution predicts a lower value of critical dynamic pressure to

-" sustain the limit cycle oscillation than does the first order solution for

amplitudes of motion near the P+2S value. This is directly related to the

effective stiffness behavior predicted for this amplitude range as was dis-

cussed in Section 2.0 and illustrated in Figure 8.

First and second order solutions for the rigid baseline control surface

having preload nonlinearities in both root degrees of freedom are shown in

-32 -
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Figure 19. The results presented are for a 0.2 degree freeplay region in both

degrees of freedom and a freeplay-to-preload,S/P, ratio of two. The two pair f
of curves shown in this figure are for two different values of the amplitude-

to-freeplay ratio, S/A. The effective stiffness of the preload nonlinearity

is a double-valued function as illustrated in Figure 8. Therefore, the re-

sults shown in Figure 19 are for double-valued amplitude of motion ratios.
The larger S/A values correspond to amplitudes less than the quantity P+2S,
whereas the lower ratios correspond to amplitudes in excess of this value.

As for the case of a single nonlinearity the presence of the higher har-

monics can substantially change the prediction of the limit cycle response.

In both Figures 18 and 19, the nonlinearity in root pitch is more critical in

terms of initiating a limit cycle response. For root pitch nonlinearities the

results indicate that the limit cycle response amplitude can be several times

greater than the magnitude of the freeplay and can be sustained at dynamic

pressures well below the flutter critical value.

A flexible control surface having a preload nonlinearities in both root

s degrees of freedom was also studied. The results for a 0.2 degree freeplay in

both root degrees of freedom and a freeplay-to-preload ratio,S/P of two are

shown in Figure 20. As with the rigid control surface studies of Figures 18

and 19, the amplitude ratios are double valued.

Figure 20 shows that at higher uncoupled roll frequencies, the second

order solutions predict a somewhat higher critical dynamic pressure than does

the first order solution at the same amplitude-to-freeplay ratio. This be-

havior is a direct result of the linear flutter data, as the trends in the

effective stiffness are the same for both the rigid and flexible cases.

I
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3.3 CORRELATION WITH NUMERICAL RESULTS

The asymptotic solutions obtained in the preceding paragraph were briefly

compared with the numerical simulation results of Reference 1. The objective

here was to compare the results of the describing-function (first order) solu-

tions and the asymptotic (second order) solutions with the "exact" numerical

solutions in the accuracy critical regions. From the results of Reference 1
it was concluded that the worst correlation between the describing-function

results and simulation results was observed for the case of a flexible control

surface with two preload nonlinearities. The authors of Reference 1 attribu-

ted this discrepency to the influence of higher harmonics neglected in the

describing-function approach. For this reason this configuration was used to
compare the three solution approaches.

The aeroelastic response results for the flexible baseline control sur-

face with two preload nonlinearities is shown in Figure 21. The dynamic pres-

sure required to sustain the limit cycle oscillation is plotted as a function

of the freeplay-to-amplitude ratio, S/A. The curves are for a system with

uncoupled pitch and roll frequencies of 215Hz and 140 Hz, respectively. In

Figure 21(a), the root roll motion is shown, and in Figure 22(b) the root pitch
motion is shown. The results of these comparisons show a better correlation
between the second order asymptotic solution and the numerical simulations

than was obtained using the first order solutions. This supports the con-

clusions of Reference 1 that the source of the error in the one term des-

cribing-function approach is a result of the higher harmonics not being in-

cluded in modeling the nonlinear behavior.

39
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4.0 CONCLUSION

The presence of structural nonlinearities can adversely affect the

aeroelastic response of aerodynamic surfaces. Of particular concern is the

occurance of a sustained limit cycle response which may lead to structural

1damage of the aerodynamic surface, support structure and equipment components
such as control actuators. The results obtained during this study show that

aerodynamic surfaces with structural nonlinearities can become susceptible to

limit cycle behavior at dynamic pressures below the linear flutter value. The

nature of the limit cycle response was found to be a constant amplitude motion

with a steady state frequency expressed as a function of the magnitude of the

nonlinearity and the amplitude of the oscillation.

The objective of the present study was to develop an analysis procedure

to predict aerosurface limit cycle response that retains the flexibility and

well defined procedures of the describing-function approach, yet provides greater

accuracy and generality in modeling the nonlinear system behavior. This was

accomplished by using an asymptotic expansion technique to derive a relationship

between the parameters characterizing the structural nonlinearity and the amplitude

and frequency of the limit cycle response.

The overall conclusion from this investigation is that the use of the

asymptotic expansion method results in an accurate prediction of the aerodynamic

surface limit cycle response. The procedure described in this study was used to

investigate the interrelationship between the magnitude of the nonlinearities,

flight conditions and the nature of the resulting limit cycle response. First and

second order asymptotic solutions were developed for a freeplay type nonlinearity

with and without a linear preload in the root support structure. The asymptotic

solutions, which contain the contribution of higher harmonics, were compared with

the describing-function approach which contains only the first harmonic. It was

shown that the first order asymptotic solutions and the describing-function

* approach were identical and the higher order asymptotic solutions could be used to

7 account for the contribution of higher harmonics in the limit cycle response.

1.
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The significance of the higher harmonics in predicting the nature of the

limit cycle response was found to depend on the particular nonlinearity studied.

During the development of the second order asymptotic solutions for the freeplay

nonlinearity it was concluded that the higher harmonics had small effect on the

results. Even for amplitudes near the freeplay magnitudes, where the nonlinear

effect is strongest, the higher harmonics were found to have little influence.

These results are reasonable when one considers the exceptionally good

correlation demonstrated between the first order, single term solution and the

exact numerical solution. It is concluded that little is gained in the prediction

of limit cycle response by including the higher order solutions for the freeplay

nonlinearity.

In the case of the preload nonlinearity the influence of higher harmonics

was found to have a definite impact on the predicted limit cycle response. When

the first and second order solutions were compared for this nonlinearity, the

latter predicted a considerably greater reduction in the effective stiffness at

amplitudes near the freeplay region of the load-displacement curve. This behavior

was observed to be consistent with the numerical simulation results presented in

Reference 1. As the amplitude of motion became larger than the preload-plus-

freeplay magnitude, the first and second order asymptotic approximations of the

effective stiffness converged. As amplitudes increased further both soluticns

approach the linear solution results. In addition to the influence on the

effective stiffness values the higher harmonics were also seen to contribute to

the form of the expressions to determine the limit cycle time history response.

Variations of amplitude in the computed waveform for the limit cycle response

could be attributed directly to these higher order harmonics. It was concluded

from these results that for the preload type nonlinearity the second order

asymptotic solutions should be used to accurately predict the nature of the limit

* cycle response.

This study has shown the applicability of the asymptotic expansion approach

- to account for the influence of structural nonlinearities in the limit cycle

response analysis of aerodynamic surfaces. The method developed employs the

asymptotic solutions to determine the effective system parameters governing the

42
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I
nonlinear response. The ability to include the influence of higher harmonics in

the nonlinear load-displacement relationship and obtain solution accuracies to any

desired order have been demonstrated. The methods were applied to two simple

I nonlinear systems and the potential influence of higher order solutions on the

limit cycle response was investigated. The applicability of the asymptotic methods,

however, is not restricted to these nonlinearities or undamped systems.

Investigations of the asymptotic solutions for systems with other types of non-

7 linearities, including nonlinear damping dependent on the displacement and/or its

derivatives, are feasible using this approach.

,4
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i LIST OF SYMBOLS

A Amplitude of motion at surface root support
a Fourier series coefficient

B1, 82 Stiffness correction terms derived from asymptotic expansions

I bi Fourier series coefficients

F(x) Nonlinear load term in root spring

gn Fourier series coefficients

hn Fourier series coefficients

I Rigid control surface inertia properties

K Linear spring rate of root springs

K Effective spring rate of root springs

M System mass

N Order of asymptotic expansion

O(EN) Higher order terms of order N

P Nonlinear preload value

Q Aerodynamic forcing function

S Nonlinear freeplay value

t TimeI
UN Asymptotic expansion functions

aN Asymptotic expansion coefficients

•aN Asymptotic expansion coefficient

C N Gage function

Displacement in root pitch

Displacement in root roll

Uncoupled natural frequency of linearized system

Phasing function

Subscripts

n General indicies
0 Associated with root pitch degree.of freedom

e Associated with root rot degree of freedom
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1 APPENDIX A

Flutter Analysis of Baseline Aerodynamic Surface

The aeroelastic analysis performed in this study utilized the flutter

1 results for the effective or linearized representation of the baseline aero-

dynamic surface. The physical description of the baseline surface and the

flutter results for both rigid and flexible cases are discussed below.

Properties of the Harpoon missile control surface were used to define the

baseline surface configuration which was used throughout the study. The ge-

ometric configuration of the control surface is shown in Figure A-l. The

structural nonlinearities that were investigated are associated with the root

support. Presented in Figure A-2 are the inertia properties of the control

surface. The first two rows and the columns of the inertia matrix are asso-

ciated with rigid root roll and pitch motions while the last two diagonal

elements are the generalized masses of the control surface modes. The

off-diagonal terms, the PF quantities, represent the inertia coupling between

rigid and flexible motions. The mode shapes associated with the first two

control surface cantilever modes are given in Figure A-3. These modal data

were used when investigating a flexible control surface configuration.

Representative flutter results for the baseline control surface take the

form illustrated in Figures A-4 and A-5. The results given in Figure A-4 are

for a rigid fin while those for the flexible fin are given in Figure A-5.

These two figures show the variation in the flutter critical dynamic pressure

as a function of the effective root roll frequency for various values of the

effective root roll frequency.
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(b) Specific inertia terms
Figure A-2 Control surface Inertia properties
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APPENDIX B

DETAILED DEVELOPMENT OF THE ASYMPTOTIC SOLUTIONS

In the discussions of the asymptotic solutions presented in Section 2.0,

the first and second order approximations to the limit cycle response were

presented. The details of the computational steps are given here for the

freeplay and preload nonlinearities.

As discussed in Section 2.0 the nonlinear equations of motion for the

system considered in this study can be written as

dx f(x) + Q(x) (B1)

dt

In the asymptotic expansion methods, the solution of Equation (81) is assumed

to be of the form

N
Acos + E en Un (A,i) + 0 (N+l) (B2)

n=1

The amplitude A, and phasing parameter 0 ire determined from

dA N n N+(
dt n-i n + 0 (CN) (83)

n0 n

dib N Cn + 0 )~ (B4)

The term N indicates the order of the asymptotic approximation. For this

study solutions up to the second order (N=2) were determined. The n and Bn
terms of Equations (B3) and (Bl) are functions that satisfy Equation (Bi) and

"! are expressed in terms of coefficients obtained from the Fourier Series ex-

pansion of the nonlinear function f(X) in Equation (81).

'I
*In Appendix 8, the number in the second bracket identifies identical

equations from Section 2.0. As equations (B-i), (B-2), (B-3) and (8-4) were

discussed in detail In Section 2.0 they will just be presented here. Refer to

Section 2.0 for a complete description of these equations.

.5



The first step in the solution procedure is to determine functions a,,

L2' 1I 2, and U1. These functions can be derived by expanding the nonlinear

function f (*) in a Fourier Series, substituting Equations 82 through B4 into

Equation 81 and equating coefficients of sin * and cos 4. These functions are

given by the following relations,

l 2 - f (A cos *) sin ,d, (B5)

I 2w

IN 2w-- f f (A cos *) cos *d* (B6)
0

= f ( cos n + h sin no (B7)ul -2 nZ-

where

gn= 'o f (A cos )cos nsd* (B8)

1n f2

0hn ' Jo f (A cos )sin nsd* (B9)

The terms al, 01, gn and hn are the coefficients of the Fourier Series ex-
pansion of the nonlinear force f(X) acting on the system. The second order
coefficients a2 and P2 can be expressed in terms of Equations (B5) through

(B7) and the derivative of f(X) as

-1 d I 1 2w
-I "!~~~ oil "T OIB + al A 1--"2T sin *do (810)

2 ctl do I 1 f 2w6.3;- - - j cos *d* (Bll)

[', [U fx A cos $+ (a cos As, sin $+ wTU- f (812)
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By computing the terms in Equations (55) through (812), substituting into

Equations (B3) and (B4) and integrating, the amplitude A and phasing

parameter, g approximated to the second order, are obtained.

I
Equations (B5) through (812) are for the general case. For the two non-

linearities considered in this study, these equations can be reduced to a much

simpler form. First, the form of f(X) for the freeplay and preload nonlin-

earities is such that all an and hn terms in Equations (85), (810), and (B9)

are identically zero. For this case, Equations (B3) and (B4) yield

(813)

A = const

-7t W + C£I + C2 a2)t + const. (B14)0 1t 2)

or 7 ( + 2 ) (B15)

where G is the effective frequency approximated to the second order. Equa-

tions (87) and (81) then become.

g0(a) - gn cosB1U 1 ="" 7- 2_16

o 0 n=2 n-i

812 1 2 cr (B17);~~~ ]E=" """ cos *d*
B2- _ 2ww A f

0 0

The computational effort of this study was centered on determining U1 , B1 and

B2 given by Equations (6), (B16) and (B17), respectively.

The form of the effective stiffness to the second order given by Equa-

tion (4) is

/2 N
SK \1 + c B1 + 2 .. N ) (18)
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This expression can be obtained from Equation (B15) by squaring both sides and

retaining term up to 4 2. This yields,

S : [° 1 +.a 1 + - o B1 2 + 202  (619)

Substituting Equations (B6) and (B17) for 0 1 and0 2 into Equation (BI9) and

simplifying yields

a I [1+ 61+ 2 B2 (B20)1 2]

The relationship between 81 and B2 and j1 is defined as

B1 = 2 L (B21)
0

B = 1 f (A cos 0) cos *d* (B22)
irAw f10 0

where 0 is defined by equation B-12.

Note that here it is.implied that

I = IA Icos Od* (823)

lim_ W? 2  (B24)

Using the relationship between the effective stiffness and natural frequency,

Equation (618) is obtained directly from (820).

Sumarizing the computational procedure, the first step is to compute o

for the linear system. Then the term l is obtained from Equation (86). Next

coefficients B and B2 can be determined using Equations (612), (821) and

(822). At this point the second order correction to the effective stiffness

is obtained from Equation (618). The computation of the time domain solution

then requires solution of Equations (88), (814) and (B16). The form of these

relationships are presented below for the two nonlinearities considered in

this study.
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FREEPLAY NONLLINEARITY

In order to compute the coefficients of the asymptotic approximations,

the initial step is to expand the load relationships, L(t) in a Fourier

Series. This load relationship is shown in Figure 4 of the text and is

*1 expressed as

L(t) ofor < t < t1  (825)
0K[A sin t - S] for t < t < 2w

This load is in the form of the function F(Acost) in Equation (B21) so the

first Fourier coefficient corresponds to the BI term in Equation (B20). Since

the load function L(t) is a single-valued odd function its Fourier Series

representation is of the form

L (t) bn cos n t 
(B26)

j L (t) cos n t (B27)
n 2v 0

As mentioned above the bl term of Equation (B27) and 81 in Equation (B20) are

related by the expression

= 1 b _ )(B28)
The form of the bl term for the load of Equation (825) is,

b1 " f - 2 t -sin 2 t1  (829)

Computation of the 62 term of Equation (B23) requires the coefficients of the

higher harmonics of Equation (626). A general expression for these higher

harmonics is determined as

[ bn o (n - 2,4,...) (B30)

b n , W2 [r sin n t ] (n 1,3,5.. ) (831)

n i _ _



r [sin (n-1)t1  sin (n+l)t (32nu 2 T- . + 2_ n+1 )J(32

By successive substitution of Equation (830) into Equations (B16), (812)

and (823) the 82 coefficient of Equation (818) is obtained. The form for the

freeplay nonlinearity is given in Equation (833).

B2  f Em r I~ Cos t sin ntl (833)

2 n*3.5 n-1 I n

PRELOAD NONLINEARITY

The procedure for deriving the coefficients of the asymptotic approxi-

mation of Equation (B18) for the preload nonlinearity follows the same proce-

dure used for the freeplay nonlinearity. The load-displacement relation for

the preload nonlinearity is shown in Figure 7 and is defined as

((A + Al cos t -2S)K for 0 <t <ti

IPKfor 1 (t t2  (834)
L(t)a (A0.+A, cos t)K for t2 '<t<2w - t2

(PK for 2 -t 2 t <21-ti

where (A + A cos t - 2S)K for 2w - t1 < t < 2w

-l Cs P42S-A) (B35)
1 Al

Pc-sA-) (836)

The Fourier Series expansion of the load relationship is defined as

L (t) .22+ bn cos nt + a sin nt (837)
n~ 1

b0  .J L (t) dt (838)
0

bn is given by Equation (827) and all *n coefficients are zero for the func-

tion given by Equation (834).
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The bn coefficients of Equation (835) for the preload nonlinearity where

P < A -_ P+2S are

b w 02A [2 A0 (w1 1 ) + 2 P1 - 2 A1 sin t (B39)
~o 17r 2 1.

b t+L P-A~ (840)i" bl -W 0)t ~ l PA sin tI - sin 2 t]

b1.---o 7 1  A 1 1t
2A (P-Ao) (B41)

bn = n[ A1  sin ntl

tj is defined in Equation (B35) and rn is defined in Equation (B32). For

..plitude of motion A2_P+2S

L + .tl)+ (sin t2 . sin tl) +* \Ll t2J t (B2)

bl r+t2-t 2 P+2S-A°  sin t2

+ (pAO) sin t, + (sin 2 t2 - sin 2

b W {2A 2 [(A 0-P)(sin ntsin nt) -2Ssin nt) + an ~ (B44)

• t1 and t2 are defined by Equations (B35) and (836) and crn is defined as.

[sin (n-l)t 2 - sin (n-l)t I  sin (n+l)t 2 - sin (n+l)tl.

n " 2(n-1) 2 (n+l)

*0 1The detailed derivation of the asymptotic solutions for both the freeplay

and preload nonlinearities have been presented here. These derivations were

included to supplement the discussions of section 2.0 and should be referenced

when more detail is required.
1 i
t I -
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